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Abstract

After the best-known Gormans-Williamson relaxation, more and more

SDP relaxations of NP-hard combinatorial optimization problems has

been proposed by the research community. We have proposed an SDP

based directed community detection algorithm and analyze its per-

formance in the stochastic coblock models (directed stochastic block

models). In this work, we will answer the fundamental question: under

what condition, the SDP algorithm can exactly recover all the hidden

communities? In 2016, Bandeira proposed a tight spectral approxi-

mation of Laplacian matrices, which provide us with powerful tools

to analyze the matrices involved in the SDP.We prove that the SDP

algorithm is able to achieve exact recovery of the planted community

structure under conditions that match the information-theoretic limits.
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Chapter 1

Introduction

Research is formalized

curiosity.

Zora Neale Hurston, 1942

1.1 Background

Community detection and clustering are central problems in machine learning and

data science. Networks, as a ubiquitous structure in the nature, appear in diverse

domains, including sociology, biology, neuroscience and computer science [GN02],

[New03]. Among many properties of networks, one of the most significant features

is community structure or clustering i.e., a subset of vertices in a huge network

are strongly connected while the inter-community connectivity is relatively weak.

There are two kinds of networks(graphs): directed (such as citation networks,

food web and airline networks) and undirected (such as maps, social networks

and computer networks). A huge amount of research has been done to solve the

challenging community detection problem in undirected networks: when and how

to infer the hidden community structure from the linkage among vertices in undi-

rected networks [For10], [GN02], [LFR08], [New03]. It is worth mentioning that

most real world interactions are directional so finding clusters in directed networks

is also a challenging task with several important applications [MV13]. However,

the problem of graph clustering has mainly been considered and studied for the

case of undirected networks. Given its importance but lack of attention from the
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1.1 Background

research community, studying the clustering algorithms and their performance in

directed graphs becomes our original motivation of the thesis.

Network with random block structure is common in various domains includ-

ing mathematics, computer science, physics, and statistics. Originally proposed

in [Kno08] to study the social networks, the stochastic block model (SBM) is a

classical example. Now it has become a benchmark model for comparing different

community detection algorithms [LF09]. Its growing popularity is largely due to

the fact that its structure is simple to describe, but at the same time it has in-

teresting and involved phase transition properties which have only recently been

discovered [ABH14], [Ban15], [AS15]. Recently, lots of research has been done

to develop algorithms and methods to either recover or detect the hidden com-

munities with emphasis on understanding the fundamental limits for community

detection in connection with the undirected SBM [ABH14]. However, there is

limited discussion about the recovery and detection in the directed SBM.

SBM (directed and undirected) is known to have desirable consistency and

in some sense optimality properties, but the exactly estimating the parameters

of SBM is in general NP-hard [KBG18]. Thus, finding an effective semidefinite

programming (SDP) relaxation of the likelihood optimization problem becomes a

way to overcome the computational challenge.

In this work, we will study the performance of semidefinite programming in

community detection for the stochastic co-block model. We denote by G(n, pn, qn)

the stochastic co-block model (ScBM) or the directed SBM with a total of n

vertices and n
2

for each community; the adjacency matrix A = (Aij)1≤i,j≤n of

this directed network is an asymmetric matrix which has zero diagonal and its

(i, j)-entry an independent Bernoulli random variable:

P(aij = 1) =

pn if directed pairs (i, j) are in the same community

qn if directed pairs (i, j) are in different communities

where pn > qn ∀n. Note that the parameters p and q usually depend on n; for

simplicity, we replace pn and qn by p and q if there is no confusion.

We will answer the following fundamental question: under what condition on

2



1.2 Related works and our contribution

(n, p, q) is the semidefinite programming able to recover the underlying hidden

communities exactly from directed networks generated from ScBM G(n, p, q)?

1.2 Related works and our contribution

The four topics: community detection, semidefinite programming, stochastic block

model and directed networks been studied over the years with various different

objectives and guarantees, so naturally there is a wealth of research production

in these areas. We will briefly review the topics and highlight the literatures that

inspired our research.

Community detection for general networks is well studied and has found many

applications. There has been significant recent literature concentration around

the bipartiton (bisection) and the general k-partition problems (multisection) in

random and semi-random models [Dec+11a], [ABH14], [AS15], [Ban15]. For undi-

rected networks, spectral clustering [NJW01], [Lux07] based on Laplacian matrix

[Chu97] plays an important role in undirected community detection tasks. The

classical spectral clustering follows the well-known two step procedure: Laplacian

eigenmap and clustering the eigenspace [NJW01], [Lux07]. Although spectral

clustering is shown to be effective in many domains, its theoretical understanding

is still relatively unclear. For directed networks, current clustering algorithms

are mostly based on information-theoretic approaches and probabilistic meth-

ods. Generally, the existence of communities in networks represent structural

patterns, which can be used to effectively compress the network (data). Rosvall

and Bergstrom proposed a method (called Isomap) in [RB08] to identify communi-

ties in directed networks, by combining random walks and compression principles.

Newman and Leicht [LN08] proposed an approach for community detection in di-

rected networks based on mixture models for statistical inference. To highlight the

difficulty of community detection in directed network, Fortunato stated that ”De-

veloping methods of community detection for directed graphs is a hard task. For

instance, a directed graph is characterized by asymmetrical matrices (adjacency

matrix, Laplacian, etc.), so spectral analysis is much more complex. Only a few

methods can be easily extended from the undirected to the directed case. Otherwise,
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1.2 Related works and our contribution

the problem must be formulated from scratch” [LFR08]. Therefore, finding effec-

tive ways to deal with asymmetry plays an important role in directed community

detection.

The analysis of the stochastic block model originated from [Kno08] to study the

interaction of social networks. Since then, a vast amount of follow-up research has

been conducted to understand how to recover the hidden planted partition with

efficient polynomial-time algorithms. There are two natural problems that arise

in context of the SBM: exact recovery [ABH14], [AS15], [Ban15], where the aim

is to recover the hidden partition completely; and detection [MNS18], where the

aim is to recover the partition better than what a random guess would achieve.

In this work, we will focus on exact recovery in directed SBM. For undirected

SBM, [Abb17] has done an exhaustive literature review about the sharp threshold

of detection and proved that for exact recovery in SBM with 2 communities:

(1) in the regime p = an−1, q = bn−1, [Dec+11b] applied the cavity method to

predict that a detection threshold exists for the community detection problem

under stochastic block models. Later on, this detection threshold is confirmed

by [Mas14] [MNS18] that the detection of community is possible if and only if

(a − b)2 > 2(a + b); (2) in the regime p = a log(n)n−1, q = b log(n)n−1, [ABH14]

proved that the sharp threshold for exact recovery is
√
a−
√
b >
√

2 by applying

spectral clustering and SDP respectively to the SBM. For directed SBM, [RQY15]

represented stochastic coblock model (directed SBM) based on the notion of co-

clustering (i.e., the task in which both rows and columns of the adjacency matrix

are clustered simultaneously). The new model is also accompanied by a new

spectral clustering algorithm for directed networks based on the singular value

decomposition of the Laplacian defined by the authors. They extend the spectral

clustering presented in [Lux07] to an asymmetric context.

The use of SDP in combinatorial optimization originated from [Lov79] for the

Lovasz theta function, which is the upper bound of the Shannon capacity of a

graph. In 1995, Goemans and Williamson proposed the first graph approximation

algorithm based on SDP [GW95]. The well-known Goemans-Williams relaxation

gives the approximation ratio to the NP-hard max-cut problem. After that, many

SDP relaxation of NP-hard combinatorial problems had been proposed by the
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research community. In fact, the algorithm we will analyze in ScBM is greatly

inspired by [GW95] and the algorithm used by [Aga+15] in undirected SBM. In

this work, we are interested in when is it the case the SDP algorithm can exactly

recover all the hidden communities for inputs generated from ScBM. As a result

of the analysis, we can deduce the sharp threshold for exact recovery in stochastic

cblock models. Our contribution is that: (1) we proved the sharp threshold for

exact recovery in ScBM; (2) we proposed an SDP algorithm that can achieve

the threshold; (3) we proposed a directed spectral clustering algorithm that can

achieve the threshold (we will not cover the details in this work).

1.3 Notations

For a matrix M , we denote the kth smallest eigenvalue by λk(M), the largest

eigenvalue by λmax(M), and its operator norm by ‖M‖op.

1 denotes the all-ones vector, whenever there is no risk of ambiguity for its

dimension and Jn denotes the n× n all-one matrix.

For a scalar random variable Y , we will write its p-norm as ‖Y ‖p = E‖Y ‖p

and infinity norm as ‖Y ‖∞ = {a : Y ≤ a a.s.}.

Given a directed graph G and its adjacency matrix A, degR(i) denotes the ith

row sum of its adjacency matrix A, and degC(i) denotes the ith column sum of

its adjacency matrix A. In the stochastic coblock model, in the context of co-

clustering, deg+
R(i) and deg−R(i) denote the in-cluster and out-cluster degree in row

of node i; and deg+
C(i) and deg−C(i) denote the in-cluster and out-cluster degree in

column of node i.

We say an event E happens with high probability if

P[E] = 1− n−Ω(1)

where n is an underlying parameter that is thought of going to infinity such

as dimension of the matrix and the number of nodes in the graph.
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Chapter 2

Premilinaries

2.1 Positive Semidefinite Matrices

In this section we will review the definition of positive semidefinite matrices and

some of their properties. We refer interested readers to [HJ85] and [GLS90] for

proof of the theorems and details about this topic.

Definition 2.1.1. An n× n matrix A is is said to be positive semidefinite (PSD)

if A is symmetric and if x>Ax ≥ 0 for all x ∈ Rn. We will write A < 0 if A is

PSD.

Theorem 2.1.1. (Spectral theory for PSD matrices) Let A be an n × n PSD

matrix, then the following hold:

(1) The eigenvalues λ1 ≤ λ2 ≤, ..,≤ λn are non-negative.

(2) A has orthonormal eigenvectors v − 1, ..., vn corresponding to λi for i =

1, .., n. Moreover, we have the decomposition A = V ΛV >, where V =

(v1, ..., vn) and Λ = diag(λ1, ..., λn).

(3) The rank of A is equal to the number of nonzero eigenvalues of A.

Definition 2.1.2. Given symmetric matrices A,B, we define 〈A,B〉 := A • B =

tr(A>B) =
∑

i,j AijBij.

Fact 1. x>Ax =
∑

ij xixjAij = (xx>) • A.

Fact 2. For any two n× n matrices A,B, tr(AB) = tr(BA).
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2.2 Semidefinite Programming

Lemma 2.1.2. For A < 0, A •B < 0, ∀B < 0.

Lemma 2.1.3. For PSD matrices A,B, A •B = 0 iff AB = 0.

2.2 Semidefinite Programming

Given this understanding of PSD matrices, we can now look at semidenite pro-

grams (SDPs), and the duality theory. For additional background information we

refer readers to Chapter 4 and 5 of [BV04] and [HRW00].

2.2.1 Basic Definitions

In semidefinite programming, we are interested in optimizing a linear function of a

symmetric matrix subject to linear constraints and a crucial additional constraint

that the matrix be positive semidefinite. It could be viewed as an extension of

linear programming and a particular case of conic programmings (restricted to the

cone of positive semidefinite matrices). Let Sn denote the set of n× n symmetric

matrices and S+
n denote the set of n× n PSD matrices. The SDP of the standard

form is defined to be: for C,A1, ..., Am ∈ Sn, and b ∈ Rm be given,

(PSDP ) :

min C •X

s.t Ai •X = bi 1 ≤ i ≤ m

X ∈ S+
n

(2.1)

By Lagrangian dual, its dual form could be written as:

(DSDP ) :

max b>y

s.t
m∑
i=1

yiAi + Z = C

y ∈ Rm, Z ∈ S+
n

(2.2)

We shall refer to PSDP as the primal problem and to DSDP as the dual problem.

In order to decide about possible infeasibility and unboundedness of the problems

(PSDP) and (DSDP), let us consider the following definitions.
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2.2 Semidefinite Programming

Definition 2.2.1. A matrix X ∈ S+
n is called a primal ray if A1 • X = 0 for

i = 1, ...,m and C •X < 0.

Definition 2.2.2. A vector y ∈ Rm is called dual ray if −
∑m

i=1 yiAi < 0 and

b>y > 0.

We then have the following elementary result:

Proposition 2.2.1. The existence of a dual ray implies the infeasibility of (PSDP).

Similarly, the existence of a primal ray implies the infeasibility of (DSDP).

2.2.2 Duality Theory

By simply taking the difference between the objective function of PSDP and

DSDP, we get the weak duality theorem:

Theorem 2.2.1. (SDP Weak Duality) Let X and (y, Z) be feasible for PSDP

and DSDP, respectively. Then we have C •X − b>y = X • Z ≥ 0.

As the generalization of Linear Programming, it is natural to try generalizing

the Farkas lemma to the positive semidefinite cone S+
n . It turns out that such

generalization is possible, but the strong duality theorem for SDP is slightly weaker

than that for LP because some additional qualifications should be satisfied. Let’s

introduce the strong duality theory and KKT conditions.

Theorem 2.2.2. (SDP Strong Duality) Consider the following primal-dual

pair:

(PSDP ) : v∗p = inf{C •X : Ai •X = bi, i = 1, ..., n,X ∈ S+
n }

(DSDP ) : v∗d = inf{b>y :
m∑
i=1

yiAi + Z = C, y ∈ Rm, Z ∈ S+
n }

Then the following hold:

(1) If the DSDP is strictly feasible, (i.e there exists an (ỹ, Z̃) ∈ Rn × S+
n , such

that
∑m

i=1 ỹiAi + Z̃ = C, ỹ ∈ Rm and Z̃ < 0), then v∗p = v∗d. If in addition

(DSDP) is bounded above, then the common optimal value is attained by

some X∗ ∈ {X ∈ S+
n : Ai •X = bi, i = 1, ..., n}.
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2.3 Perturbation theory

(2) If the PSDP is strictly feasible, (i.e there exists an X̃ < 0 such that Ai •X =

bi, i = 1, ..., n), then v∗p = v∗d. If in addition (PSDP) is bounded above,

then the common optimal value is attained by some (y∗, Z∗) ∈ {(y, Z) :∑m
i=1 yiAi + Z = C}.

(3) Suppose that at least one of (PSDP) or (DSDP) is bounded and strictly fea-

sible. Then, a primaldual feasible pair (X; y, Z) is a pair of optimal solutions

to the respective problems if and only if either one of the following holds:

(a) (Zero Duality Gap) CX = b>y

(b) (Complementary Slackness I) X • Z = 0 ⇐⇒ XZ = 0.

(c) (Complementary Slackness II) There exists an n × n orthogonal

matrix V (V >V = I) such that (i) X = V ΛV >, Z = V ΩV > for some

n × n diagonal matrices Λ,Ω. (ii) ΛΩ = 0. In, particular, we have

rank(X) + rank(Z) ≤ n.

(4) Suppose that both (PSDP) and (DSDP) are strictly feasible (?). Then we

have v∗p = v∗d and both values are attained. The the pair (X; y, Z) is primal-

dual optimal if and only if the KKT conditions: 1. (∗); 2. 3(a) or 3(b)

hold.

2.3 Perturbation theory

SupposeA is the adjacency matrix sampled from two-community symmetric stochas-

tic coblock model G(n, p, q). Without loss of generality, we assume the first n/2

nodes form one community and the second half nodes form the other one. Since

A is asymmetric, we usually consider the augmented matrix of A:

Definition 2.3.1. (Augmented Matrix) The augmented matrix of an n × n

matrix A is A∗ :=

0 A>

A 0

, which is an 2n× 2n symmetric matrix.

If A has the singular value decomposition A = UΣV >, then A∗ has the eigen-
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2.3 Perturbation theory

decomposition:0 A>

A 0

 =
1√
2

V V

U −U

Σ 0

0 −Σ

 1√
2

V > U>

U> −U>


where U = (u1, ..., un) and V = (v1, ..., vn) are both orthogonal matrices. Σ =

diag(σ1, ..., σn). σi are called singular values, σ1 ≤ ... ≤ σn; ui are called left

singular vectors; vi are called right singular vectors.

Let A = EA, we have

EA =

pJn/2 qJn/2

qJn/2 pJn/2


p > q, with two distinct eigen pairs: (n(p+q)

2
, 1√

n
(1,1)) and (n(p−q)

2
, 1√

n
(1,−1)).

In the main results, we will use tools from pertubation theory, that is, seeing

a matrix M as pertubed EM : M = EM + (M − EM). From this, we can

establish the relationship between eigenvalues of M and eigenvalues of EM . For

eigenvalue perturbation, we will introduce two useful tools: the well-known min-

max principle, which gives rise to the famous Weyls inequality.

Theorem 2.3.1. (Courant-Fischer-Weyl min-max/max-min principles)

Let A be an n × n Hermitian matrix with eigenvalues µ1 ≤ ... ≤ µn. For any

d = 1, ..., n, write νd for the d-dimensional subspace of Cn . Then

λt = min
V ∈νt

max
x∈V \{0}

〈x,Ax〉
〈x, x〉

== min
V ∈νn−t+1

max
x∈V \{0}

〈x,Ax〉
〈x, x〉

Theorem 2.3.2. (Weyl) Let A be an n × n Hermitian matrix with eigenvalues

λ1 ≤ ... ≤ λn. Let B be an n×n Hermitian matrix with eigenvalues µ1 ≤ ... ≤ µn.

Suppose the eigenvalues of A+B are ρ1 ≤ ... ≤ ρn, then for i = 1, ..., n,

λi + µ1 ≤ ρi ≤ λi + µn

In our main results, we will also use the conclusions from [Ban15] about the

eigenvalue approximation of random Laplacian matrix.

Definition 2.3.2. (Laplacian) Given a symmetric n × n matrix X, we define

10



2.4 SDP relaxation of community detection in ScBM

the Laplacian LX of X as

LX := D−X,

where DX is the diagonal matrix whose diagonal entries are given by

(D)ii =
n∑
j=1

Xij.

We will refer to any symmetric matrix satisfying the condition L1 = 0 as a

Laplacian matrix.

Theorem 2.3.3. (spectral approximation of random Laplacian) (Theorem

2.1 in [Ban15]) Let L be an n × n symmetric random Laplacian (L1 = 0) with

centered independent off-diagonal entries such that
∑

j∈[n]\i E[L2
ij] is equal for every

i.

Define σ and σ∞ as

σ2 =
∑
j∈[n]\i

E[L2
ij] σ∞ = max

j 6=i
‖Lij‖2

∞.

If there exist c > 0 such that

σ ≥ c
√

log(n)σ∞,

then there exists c1, C, β1, all positive and depending only on c, such that

λmax(L) ≤ (1 +
C1√
log(n)

) max
i
Lii.

2.4 SDP relaxation of community detection in

ScBM

We consider the directed stochastic block model with two communities G(n, p, q),

p > q. We adapt the concept of co-clustering in [HJ85], that is, cluster the asym-

metric adjacency matrix in rows and columns respectively. Intuitively, clustering

the network means maximizing the degree discrepancy (i.e the difference between

11



2.4 SDP relaxation of community detection in ScBM

deg+(i) and deg−(i)) in rows and in columns respectively. We can write the fol-

lowing programming:

max Tr(u>Av)

s.t u = {1,−1}n,

v = {1,−1}n

(2.3)

In general, to find the row membership vector u and column membership vector v

from this programming is NP-hard. The main obstacles are: (1) A is asymmetric,

limited linear algebra tools could be used; (2) the problem is nonconvex; (3) we

have prior knowledge about the model but no constraints about the model is in

(2.3). To solve (3), we just have to penalize u>1 and v>1 in the objective function:

max Tr(u>Av)− λ(|u>1|+ |v>1|)

s.t u = {1,−1}n,

v = {1,−1}n

λ > 0

(2.4)

Then, inspired by the well-known Geomans-Williams relaxation, we come up with

the semidefinite programming to solve (1) and (2):

max 〈A∗, X〉 − λ〈J2n, X〉

s.t Xii = 1

X < 0

λ > 0

(2.5)

where

X = xx>

x = (u, v)>

u = {1,−1}n

v = {1,−1}n

(2.5) is a convex relaxation of (2.4). To recover the communities in the graph, we

will maximize the difference between in-comminity degree and cross-community

12



2.4 SDP relaxation of community detection in ScBM

degree in rows and columns respectively and do not want u and v to be too close

to the all-one vector or the all-negative-one vector. Choose λ = 1
2
, (2.5) becomes:

max Tr((2A∗ − J2n)X)

s.t Xii = 1

X < 0

(2.6)

Note that

2A∗ − J2n =

−Jn B>

B −Jn


Bij =

1 aij = 1

−1 aij = 0

Then we will define the degree matrices for ScBM and the Laplacian matrix for

ScBM:

(D+
R)ii : =


∑n/2

j=1Aij i ∈ [1, n/2]∑n
j=n/2+1Aij i ∈ [n/2 + 1, n]

(D−R)ii : =


∑n

j=n/2+1Aij i ∈ [1, n/2]∑n/2
j=1Aij i ∈ [n/2 + 1, n]

(D+
C )ii : =


∑n/2

j=1A
>
ij i ∈ [1, n/2]∑n

j=n/2+1A
>
ij i ∈ [n/2 + 1, n]

(D−C )ii : =


∑n

j=n/2+1A
>
ij i ∈ [1, n/2]∑n/2

j=1A
>
ij i ∈ [n/2 + 1, n]

Definition 2.4.1. (degree matrices) We define the in-degree matrix and out-

degree matrix for stochastic coblock model as:

D+ :=

D+
C 0

0 D+
R

 D− :=

D−C 0

0 D−R

 .

13



2.5 Threshold of exact recovery

Definition 2.4.2. Given a directed graph drawn from the stochastic coblock model

with two communities, we define

ΓSBM := D+ −D− − A∗,

where A∗ is the augmented adjacency matrix.

The dual SDP of (2.6) is:

min Tr(Y )

s.t Y < 2A∗ − J2n

Y diagonal

(2.7)

2.5 Threshold of exact recovery

After having the SDP relaxation of the community detection problem, we are

naturally curious about its performance in ScBM. The SDP algorithm maximizes

the degree discrepancy between two communities. We will thus investigate when

this estimator succeeds/fails in exactly recovering the planted partition. Recall

that we will work in the regime:

p =
a log(n)

n
, q =

b log(n)

n
.

In Chapter 3, we will first illustrate when SDP fails to recover the planted

communities, then prove that when
√
a −
√
b >
√

2, SDP solves exact recovery,

finally we will discuss our current work about directed spectral clustering in ScBM.
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Chapter 3

Main results

The main goal of this work is to show that the SDP algorithm we proposed in

Section 2.4 exactly recovers hidden communities for the directed SBM G(n, p, q)

where p = a log(n)
n

and q = b log(n)
n

, a > b when
√
a−
√
b >
√

2 and by combinatorial

analysis, we will show that this threshold is sharp.

3.1 Converse

”Converse” refers to the impossibility part of a result, i.e., when exact recovery

cannot be solved in this case. We proposed a condition under which exact recovery

is unsolvable in the ScBM. We will use combinatorial analysis to prove the result.

Theorem 3.1.1. Let G be a sample from G(n, p, q) where p = a log(n)
n

and q =

b log(n)
n

,a > b. if
√
a−
√
b <
√

2, then exact recovery is not solvable.

3.2 Achieving the threshold

3.2.1 SDP algorithm

We would like to study the performance of our SDP algorithm in ScBM and under

what condition it can solve exact recovery.

15



3.2 Achieving the threshold

Lemma 3.2.1. Let Λ = 2ΓSBM + I2n +

 2Jn Jn − In
Jn − In 2Jn

. If

Λ < 0

and λ2(Λ) > 0
(3.1)

then gg> is the unique solution to the SDP (2.1).

Lemma 3.2.2. Let n > 4 be even and let G be drawn from G(n, p, q), p > q. As

long as

λmax(−ΓSBM + E[ΓSBM ]) < n(p− q),

the semidefinite program for stochastic coblock model achieves exact recovery,

meaning that gg> is its unique solution.

We will use Theorem 2.1 in [Ban15] to estimate this largest eigenvalue. Then,

we obtain the following theorem.

Theorem 3.2.3. Let n ≥ 4 be even and G drawn from G(n, p, q), p > q. As long

as log(n)
εn

< q < p < 1
2
, for some constant ε > 1 ,then ∃∆ > 0 such that, with high

probability, the following holds: If,

min
i∈[2n]

((D+)ii − (D−)ii) ≥
∆√

log(n)
E[deg+

C(i)− deg−C(i))] (3.2)

then the semidefinite program (2.1) achieves exact recovery.

As a consequence of Theorem 3.2.3, we can prove that SDP achieves the sharp

threshold for exact recovery in stochastic coblock model.

Lemma 3.2.4. Let G be a directed random graph with n nodes drawn accordingly

to the stochastic co-block model on two communities with edge probabilities p =

a log
n

, q = b log
n

, a > b are constants. Then for any constant ∆ > 0,

(1) If

√
a−
√
b >
√

2, (3.3)

16



3.2 Achieving the threshold

with high probability,

min
i∈[2n]

((D+)ii − (D−)ii) ≥
∆√

log(n)
E[deg+

C(i)− deg−C(i))].

(2) On the other hand, if

√
a−
√
b <
√

2,

with high probability,

min
i∈[2n]

((D+)ii − (D−)ii) < 0

and exact recovery is impossible.

Together with theorem 3.2.3, Lemma 3.2.4 implies the following corollary.

Corollary 3.2.4.1. Let G be a directed random graoh with n nodes drawn accord-

ingly to the stochastic co-block model on two communities with edge probabilities

p = a log
n

, q = b log
n

, a > b are constants. As long as

√
a−
√
b >
√

2,

the semidefinite program concides with the true partition with high probability.

3.2.2 Spectral algorithm

If we view the community detection task in ScBM as an unsupervised learning

problem, we would like to find the maximum likelihood estimator of the parameters

a and b. Recall the NP-hard programming:

max Tr(u>Av)

s.t u = {1,−1}n,

v = {1,−1}n

(3.4)

The SDP relaxation aims to relax the integral constraint to a convex set that

contains all u and v, while the spectral relaxation is to relax the integral constraint

17



3.2 Achieving the threshold

to an Euclidean constraint on real valued vectors. This leads to looking for a

maximizer of

max x>A∗x

s.t ‖x‖2
2 = 2n

x>1 = 0

(3.5)

Similar to the SDP relaxation, this program also maximizes the degree discrep-

ancy in rows and columns respectively. Since 1 is close to an eigenvector of A∗,

the constraint x>1 = 0 leads the maximization (3.5) to focus on the eigenspace

orthogonal to the rst eigenvector, and thus to the eigenvector corresponding to

the second largest eigenvalue (in absolute value). Thus it is reasonable to take the

second largest eigenvector u2 of A∗ and round it to obtain an efficient relaxation

of the MLE:

X̂(i)C =

cluster 1 in columns if u2(i) ≥ 0

cluster 2 in columns if u2(i) < 0

X̂(i)R =

cluster 1 in rows if u2(i+ n) ≥ 0

cluster 1 in rows if u2(i+ n) < 0

This algorithm is equivalent to finding the eigenvector corresponding to the largest

eigenvalue of A∗− (a−b) log(n)
2n

[12n1
>
2n−

 1n

−1n

 1n

−1n

>] and round it. The main

challenge is that as the graph becomes sparser, the noise in the node degrees

become more important, and this can disrupt the second largest eigenvector from

concentrating on the communities. To analyze how sparse the graph could be

for the algorithm to exactly recover the communities, we express the augmented

adjacency matrix as a perturbation of its expected value,

A∗ = EA∗ + (EA∗ − A∗)

The spectral method will recover the true communities if the noise EA∗−A∗ does

not disrupt the first two eigenvectors of A∗ to be somewhat aligned with those of

EA∗. We will discuss this in our future manuscripts.
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Chapter 4

Numerical explorations

4.1 phase trasition plot

We will illustrate that SDP algorithm achieves the theoretical threshold
√
a−
√
b >

√
2 in Figure 4.1.
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4.1 phase trasition plot

Figure 4.1 This plot shows that the empirical probability of success of the SDP
based algorithm essentially matches the theoretical threshold of Lemma 3.2.4 in
green. We fix n = 300 and n = 500 respectively and the number of trials to be
20. Then, at each trial and for xed a > b , we check how many times each method
succeeds. Dividing by the number of trials, we obtain the empirical probability of
success by generating the random matrix Λ corresponding to the correct commu-
nities g = {1, ..., 1,−1, ...,−1, 1, ..., 1,−1, ... − 1} and check if Lemma 3.2.1 holds
(which is the sufficient condition for SDP exact recovery). The green line indicates
the theoretical threshold

√
a−
√
b >
√

2 for exact recovery.
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Chapter 5

Conclusions and open probelms

This work mainly shows that the threshold for exact recovery in directed SBM

is
√
a −
√
b >
√

2 and the our SDP algorithm can achieve this bound. Indeed,

in our case of stochastic coblock model with two balanced communities G(n, p, q),

the fundamental limit behavior is almost the same as that in the undirected case

in [ABH14]. This might be because in our model P(aij = 1) = P(aji = 1), which

makes the behavior of rows and columns almost the same in expectation. Thus,

the analysis of ScBM with inhomogenous connection probability (P(aij = 1) 6=

P(aji = 1)) could be one of our future research direction. Our current work lies in

the analysis of the directed spectral clustering algorithm in the model G(n, p, q) and

most works have been done, which will soon be included in our next manuscript.

Although SBM is one of the most important benchmark model in community

detection, it is still not fully understood, both directed and undirected. It is

natural to expect that the results obtained in this work extend to a much more

general family of network models. We list some open problems that could be our

future research direction:

• (Learning the general sparse SBM and ScBM ) Under what conditions can we

learn the parameters in undirected SBM(n, p,Q/n) and directed SBM(n, p,Q/n).

[ABH14]

• (ScBM with inhomogenous connection probability) Under what conditions

can we learn the parameters in directed ScBM where P(aij = 1) 6= P(aji =

1)? Not only adjacency matrix, this model has also asymmetric expected

adjacency matrix. Let p11 > p2 > q1 > q2, let G be a sample from the

inhomogenous ScBM with two communities ScBM(n, p11, p2, q1, q2). Let A

21



be the adjacency matrix ,then Aij is a asymmetric Bernoulli random matrix

with expectation

EA =

p1Jn q1Jn

q2Jn p2Jn

 .

• (Semi-supervised extensions) How do the fundamental limits change in a

semi-supervised setting, that is, the label of some node are exactly or prob-

abilistically revealed before the clustering task ? [ABH14]

22



Chapter 6

Proofs

6.1 Proof for Theorem 3.1.1:

6.1.1 When does MLE fail?

We can find the upper bound of the threshold first, that is, the condition when

MLE cannot exactly recover the clusters in the model. In this section we will

prove that ScBM(n, p = a ln(n)
n

, q = b ln(n)
n

), a > b, if |
√
a −
√
b| <

√
2 then exact

recovery is unsolvable (i.e.maximum likelihood estimator fails). Likelihood func-

tion: L(x, y) =
∏

i,j P
Ai,j

i,j (1−Pi,j)1−Ai,j . Let E = {max{L(x̃, y), L(x, ỹ), L(x̃, ỹ} ≥

L(x, y)}, which means there exists a pair of vertices (u, v) in different commu-

nites(in rows or colums), if their labels are flipped, the likelihood becomes larger.

We want to show that if |
√
a−
√
b| <

√
2, then there is at least one bad vertex in

rows or in columns, as defined below.

6.1.2 Degree and bad vertices

Definition 6.1.1. We define the set of bad pairs of vertices(in rows, in colums or
in rows and colums) by

BR(G) := {(u, v) : u ∈ CR
1 , v ∈ CR

2 , L(x̃, y) > L(x, y)}
BC(G) := {(u, v) : u ∈ CR

1 , v ∈ CR
2 , L(x, ỹ) > L(x, y)}

BR.C(G) := {(u, v) : u ∈ C1, v ∈ C2, L(x̃, ỹ) > L(x, y)}

For a bad pair (u, v), the relationship between degrees can be infered from the
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6.2 Proof for Lemma 3.2.1:

relationship between likelihood functions:

L(x̃, y) > L(x, y) =⇒ dR−(u) + dR−(v) > dR+(u) + dR+(v)

L(x, ỹ) > L(x, y) =⇒ dC−(u) + dC−(v) > dC+(u) + dC+(v)

L(x̃, y) > L(x, y)

=⇒ dR−(u) + dR−(v) + dC−(u) + dC−(v) > dR+(u) + dR+(v) + dC+(u) + dC+(v)

Since if L(x̃, y) > L(x, y), then L(x̃, y) > L(x, y) or L(x, ỹ) > L(x, y). It is enough

to only study the bad vertices in rows or in columns.

Definition 6.1.2. We define the set of bad vertices in rows

BR
i (G) = {u : u ∈ CR

i , d
R
+(u) ≤ dR−(u)− 1}, i = 1, 2

Lemma 6.1.1. If BR
1 (G) is non-empty with probability 1

2
+ Ω(1), the BR(G) is

non-empty with non-vanishing probability.

Proof. If u ∈ CR
1 and v ∈ CR

2 such that dR+(u) ≤ dR−(u)− 1 and dR+(v) ≤ dR−(v)− 1,
then dR−(u) + dR−(v) > dR+(u) + dR+(v).
Therefore,

P(∃(u, v) ∈ BR(G)) ≥ P(∃u ∈ BR
1 (G),∃v ∈ BR

2 (G))

≥ 2P(∃u ∈ BR
1 (G))− 1

Note that P(∃u ∈ BR
1 (G)) = nP(dR−(u) > dR+(u)) = nP(Bin(n/2, q) > Bin(n/2, p)) =

n
1−(

√
a−
√
b√

2
)2+o(1)

.

Lemma 6.1.2. If
√
a−
√
b <
√

2, then

P(∃u ∈ BR
1 (G)) = 1− o(1)

Proof. We have

P(∃u ∈ BR
1 (G)) = 1− P(∀u ∈ CR

1 , u /∈ BR
1 (G))

Note that the events {u /∈ BR
1 (G)}u∈CR

1
are pairewise independent because the

graph is directed and there is no possibility of two nodes sharing an edge. This
implies that P(∃u ∈ BR

1 (G)) = 1− o(1).

6.2 Proof for Lemma 3.2.1:

Proof. We can suppose W.L.O.G that g = (1, ..., 1,−1, ...,−1, 1, ..., 1,−1, ...,−1).
Firstly, by KKT conditions we obtain a sucient condition for gg> to be a solution
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6.2 Proof for Lemma 3.2.1:

to SDP (2.2). This will give us Λ < 0. gg> is guaranteed to be an optimal solution
to SDP (2.2) under the following conditions:

• gg> is a feasible solution for the primal problem

• There exists a matrix Y feasible for the dual problem such that Tr((2A∗ −
J2n)gg>) = Tr(Y ).

The first point being trivially verified, it remains to find such a Y (known as a
dual certificate). Let C = 2A∗ − J2n.

(CggT )ii = correct edges + correct non edges− incorrect edges− incorrect non edges

= (D+
C )ii + (

n

2
− (D−C )ii)− (

n

2
− 1− (D+

C )ii)− (D−C )ii

= 2((D+
C )ii − (D−C )ii) + 1

for i ∈ [n+ 1, 2n], i.e in rows, let j = i− n:

(CggT )ii = 2((D+
R)jj − (D−R)jj) + 1

Hence: Tr(CggT ) = Tr(2(D+
C −D

−
C ) + In) + Tr(2(D+

R −D
−
R) + In). Thus

Y =

[
2(D+

C −D
−
C ) + In 0

0 2(D+
R −D

−
R) + In

]
,

which verifies Tr((2A∗ − J2n)gg>) = Tr(Y ) and, thus dened, is diagonal. Let Let

Λ = Y −C = 2ΓSBM +I2n+

(
0 Jn − In

Jn − In 0

)
+2

(
Jn 0
0 Jn

)
. As long as Λ < 0,

gg> is an optimal solution to SDP (2.2).
λ2(Λ) > 0 ensures that gg> is the unique solution to SDP (2.2). Suppose X∗

is another optimal solution to SDP (2.2), Then Tr(X ′Λ) = 0 by complementary
slackness. By assumption, the second smallest eigenvalue of Λ is non-zero. Com-
bining this with complementary slackness, the fact that X ′ < 0 and Λ < 0, We
obtain that X ′ = kgg>. Since X ′ii = 1, X ′ = gg> by contradiction.
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6.3 Proof for Lemma 3.2.2:

6.3 Proof for Lemma 3.2.2:

Proof. Note that

E[Λ] = E[2ΓSBM + I2n +

(
0 Jn − In

Jn − In 0

)
+ 2

(
Jn 0
0 Jn

)
]

= 2(
n

2
(p− q)I2n − (

p+ q

2

(
0 Jn
Jn 0

)
+
p− q

2
gg>))

+

(
0 Jn
Jn 0

)
+ I2n −

(
0 In
In 0

)
+ (p− q)

(
g′g′> 0

0 g′g′>

)
+ 2

(
Jn 0
0 Jn

)

= n(p− q)(I2n −

(
0 g′g′>

g′g′> 0

)
n

) + (1− (p+ q))

(
0 Jn
Jn 0

)
+ I2n −

(
0 In
In 0

)
+ 2

(
Jn 0
0 Jn

)
Suppose p < 1

2
, λ2 = n(p − q), corresponding to eigenvector perpendicular to

(g′, g′)> and (1,1)>.

Let Λ = 2ΓSBM +I2n+

(
0 Jn − In

Jn − In 0

)
+2

(
Jn 0
0 Jn

)
. By Weyl’s inequalities,

λ2 > λmax(E[Λ]− Λ) = ‖E[Λ]− Λ‖op
≥ |σ2(E[Λ])− σ2(Λ)|
= |λ2(E[Λ])− λ2(Λ)|
≥ λ2(E[Λ])− λ2(Λ)

=⇒ λ2(Λ) > λ2(E[Λ])− λ2 = 0

which implies that gg> is the unique solution to the semidefinite programming
(2.1).

6.4 Proof for Theorem 3.2.3:

Proof. The idea is to apply Theorem 2.3.3. One obstacle is that ΓSBM is not
a Laplacian since ΓSBM1 6= 0. Let g denote the vector that labels the nodes
in columns and rows respectively, W.L.O.G, g = {1n/2,−1n/2,1n/2,−1n/2}. We
define

Γ′SBM = diag(g)ΓSBMdiag(g)

Note that Γ′SBM is a laplacian and both the eigenvalues and diagonal elements of
E[Γ′SBM ] − Γ′SBM are the same as those of E[ΓSBM ] − ΓSBM . Note that the off-
diagonal entries of Γ′SBM = −Aijgigj. We apply Theorem 2.1 to L = E[Γ′SBM ] −
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6.4 Proof for Theorem 3.2.3:

Γ′SBM ,

σ2 =
∑

j∈[2n]\{i}

E[L2
ij] = (

n

2
− 1)p(1− p) +

n

2
q(1− q)

≥ n

2
· 1

4
(p+ q) >

n

8

2 log(n)

εn
≥ log(n)

4ε
(1− q)2 =

log(n)

4ε
max
i 6=j
‖Lij‖2

∞.

Hence, there exists a constant ∆′ such that, with high probability,

λmax(E[Γ′SBM ]− Γ′SBM) ≤ (1 +
∆′√

log(n)
) max
i∈[2n]

[E[(Γ′SBM)ii]− (Γ′SBM)ii]

which is equivalent to

λmax(E[ΓSBM ]− ΓSBM) ≤ (1 +
∆′√

log(n)
) max
i∈[2n]

[E[(ΓSBM)ii]− (ΓSBM)ii].

Note that

min
i∈[2n]

((D+)ii − (D−)ii) ≥
∆√

log(n)
E[deg+

C(i)− deg−C(i))]

⇐⇒ max
i∈[2n]

(E[(Γ′SBM)ii]− (Γ′SBM)ii) ≤ (1− ∆√
log(n)

)(
n

2
(p− q)− p)

Therefore,

λmax(E[Γ′SBM ]− Γ′SBM) ≤ (1 +
∆′√

log(n)
)(1− ∆√

log(n)
)(
n

2
(p− q)− p)

For each ∆′, there exists ∆′ > 0, such that,

(1 +
∆′√

log(n)
)(1− ∆√

log(n)
) < 1 (6.1)

Then

λmax(E[Γ′SBM ]− Γ′SBM) < (
n

2
(p− q))

which garuentees the exact recovery of the semidefinite programming.

In order to prove Lemma 3.2.4, we will use some conclusions from [ABH14]

and [Ban15].

Definition 6.4.1. (Definition 3 in [ABH14]) Let m be a natural number, p, q ∈
[0, 1], and δ ∈ R, we define

T (m, p, q, δ) = P[
m∑
i=1

(Zi −Wi) ≥ δ],
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6.4 Proof for Theorem 3.2.3:

where W1, ...,Wm are i.i.d Bernoulli(p) and Z1, ..., Zm are i.i.d Bernoulli(q) inde-
pendent of W1, ...,Wm.

Lemma 6.4.1. Recall definition 6.4.1. Let a, b,∆′ be constants. Then

T (
n

2
,
a log(n)

n
,
b log(n)

n
,−∆′

√
log(n)) ≤ exp[−(

a+ b

2
−
√
ab− δ(n)) log(n)]

with δ(n)→ 0.

Proof. This is obtained by straightforward adaptions to the proof of Lemma 8 in
[ABH14].

Proof. (of Lemma 3.2.4) Let a and b satisfy
√
a −
√
b >
√

2. Given ∆ > 0, we
want to show that, with high probability

min
i∈[2n]

((D+)ii − (D−)ii) ≥
∆√

log(n)
E[deg+

C(i)− deg−C(i))] =
∆√

log(n)

n

2
(p− q).

For fixed i throughout the rest of the proof. Clearly,

(D+)ii − (D−)ii = (

n
2
−1∑
i=1

Wi)− (

n
2∑
i=1

Zi) =

n
2
−1∑
i=1

(Wi − Zi) + Zn
2

where W1, ...,Wm are i.i.d Bernoulli(p) and Z1, ..., Zm are i.i.d Bernoulli(q) inde-
pendent of W1, ...,Wm. Thus

P((D+)ii − (D−)ii <
∆√

log(n)
E[deg+

C(i)− deg−C(i))])

= P(

n
2
−1∑
i=1

(Wi − Zi) + Zn
2
< ∆

√
log(n)(

a− b
2

))

= P(

n
2
−1∑
i=1

(Zi −Wi)− Zn
2
> −∆

√
log(n)(

a− b
2

))

≤ P(

n
2
−1∑
i=1

(Zi −Wi) > −∆
√

log(n)(
a− b

2
))

Let ∆′ = (a−b
2

)∆, By Lemma 6.4.1, for fixed i,

P((D+)ii − (D−)ii <
∆√

log(n)
E[deg+

C(i)− deg−C(i))])

≤ T (
n

2
,
a log(n)

n
,
b log(n)

n
,−∆′

√
log(n))

≤ exp[−(
a+ b

2
−
√
ab− δ(n)) log(n)]
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6.4 Proof for Theorem 3.2.3:

where δ(n)→ 0. By union bound,

P(min
i∈[2n]

[(D+)ii − (D−)ii] <
∆√

log(n)
E[deg+

C(i)− deg−C(i))])

≤ 2n exp[−(
a+ b

2
−
√
ab− δ(n)) log(n)]

= 2 exp[−(
a+ b

2
−
√
ab− 1− δ(n)) log(n)]

As long as a+b
2
−
√
ab > 1, P(mini∈[2n][(D

+)ii − (D−)ii] >
∆√

log(n)
E[deg+

C(i) −

deg−C(i))]) = 1− 2n−ε, ε > 0.
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